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IIR Butterworth Low-High Pass Optical Filters 
Design 

Elham Jasim Mohammad 
 

Abstract— In this study, the efforts have been made to introduce the concept of filtering, describes Butterworth and Infinite Impulse 
Response (IIR) filters, and how it can be designed using MATLAB. The types of IIR filters like Butterworth low-pass and high-pass filters 
are designed to generate their magnitude response and filter coefficients. The main goal of this work is to obtain an optimized filter 
response along with the filter coefficients. 

Index Terms— Band-pass, Band-stop, Butterworth, High-pass, Low-pass.   

——————————      —————————— 

1 INTRODUCTION                                                                     
PTICS filters are devices that selectively transmit light of 
different wavelengths or have interference coatings. The 
simplest, physically, is the absorptive filter; interference 

can be quite complex. Optical filters selectively transmit light 
in a particular range of wavelengths. They can usually low-
pass or high-pass [1], [2]. 

An filter could correctly be called low-pass, but conven-
tionally is described as long-pass (low frequency is long wave-
length), to avoid confusion. A low-pass filter is an electronic 
filter that passes low frequency signals and attenuates (reduc-
es the amplitude of) signals with frequencies higher than the 
cutoff frequency. The actual amount of attenuation for each 
frequency varies from filter to filter. A band-pass filter is a 
combination of a low-pass and a high-pass. A high-pass filter 
is an electronic filter that passes high frequency signals but 
attenuates signals with frequencies lower than the cutoff fre-
quency [1]. The actual amount of attenuation for each frequen-
cy also varies from filter to filter. A high-pass filter is usually 
modeled as a linear time invariant system. It is sometimes 
called a low-cut filter or bass-cut filter.  

The theoretical filter design problem involves the determi-
nation of a set of filter coefficients to meet a set of design spec-
ifications. These specifications typically consist of the width of 
the pass-band and the corresponding gain, the width of the 
stop-band and the attenuation therein; the band edge frequen-
cies and the peak ripple tolerable in the pass-band and stop-
band [3]. 
Measure both the pass-band ripple and the stop-band attenua-
tion in decibels (dB). 

In this paper, two types of Infinite Impulse Response (IIR) 
Butterworth filters designed. IIR filter possess certain proper-
ties, which make them the preferred design choices in numer-

ous situations.  The ratio of the amplitude of the output wave 
to the amplitude of the input wave defines what is called the 

amplitude response of the filter, and can be measured using a 
sample sine wave. 

2 INFINITE IMPULSE RESPONSE FILTERS 
Infinite Impulse Response filters, known as recursive filters 
operate on current and past input values and current and past 
output values. Theoretically, the impulse response of an IIR 
filter never reaches zero and is an infinite response. A recur-
sive filter is one which in addition to input values also uses 
previous output values [4], [5]. 
The IIR filter can realize both the poles and zeroes of a system 
because it has a rational transfer function, described by poly-
nomials in z in both the numerator and the denominator. The 
equation below defines the direct form transfer function of an 
IIR filter [5]: 
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A filter implemented by directly using the structure defined 
by the above equation. Where, M and N are order of the two 
polynomials,   and  are the reverse and forward coeffi-
cients of the IIR filter. It can be written in the form of general 
difference equation as follows [5]: 
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IIR filters can be expanded as infinite impulse response filters. 
In designing IIR filters, cutoff frequencies of the filters should 
be mentioned. The order of the filter can be estimated using 
butter worth polynomial. That’s why the filters are named as 
Butterworth filters. Filter coefficients can be found and the 
response can be plotted [6]. 

3 BUTTERWORTH FILTERS 
The Butterworth filter is designed to have as flat a frequency 
response as possible in the pass-band. It is also referred to as a 
maximally flat magnitude filter. It was first described in 1930 
by the British engineer Stephen Butterworth in his paper enti-
tled "On the Theory of Filter Amplifiers". 
Butterworth filters are defined by the property that the ampli-
tude response is maximally flat in the pass-band. Butterworth 
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filters have the following characteristics: 
1- Smooth response at all frequencies. 
2- Maximal flatness, with the ideal response of unity in the 

pass-band and zero in the stop-band. 
3- Half-power frequency or 3dB down frequency, that corre-

sponds to the specified cutoff frequencies. 
The transfer function for Butterworth filter is given by [5]: 
 [ ] 2/12

0 )/(1/1)( nB ωωω +=                                               (3) 
 
Where ω is the angular frequency in radians per second and n 
is the number of poles in the filter equal to the number of reac-
tive elements in a passive filter. If ω = 1, the amplitude re-
sponse of this type of filter in the pass-band is 1/ ≈ 0.707, 
which is half power or 3dB. 
Higher order Butterworth filters approach the ideal low-pass 
filter response. Butterworth filters do not always provide a 
good approximation of the ideal filter response because of the 
slow roll-off between the pass-band and the stop-band [7], [8]. 

4 RESULTS AND DISCUSSION 
The Butterworth filter is one type of optical digital filter de-
sign, which is designed to have a frequency response which is 
as flat as mathematically possible in the pass-band. 
The comparison with the same specification, like cutoff fre-
quency, stop frequency, pass-band attenuation, stop-band at-
tenuation, sample rate and order of the filter, transition band 
is improved for low-pass and high-pass Butterworth Filter as 
compared using MATLAB are shown below.  
Results are derived for Butterworth filter for magnitude re-
sponse and phase responses are obtained. On comparing, we 
see that the results obtained are practically deferent from both 
types. 
     The statistical results for mean, median, mode and the 
standard deviation (STD) are calculated. 
Figs. 1 (a) is response of Butterworth low-pass filter. The pass-
band ripple for this filter =5. (b) is response of Butterworth 
high-pass filter with pass-band ripple =5. 
In low-pass case, mean= -97.81, median= -112.6, mode= 0, and 
the STD= 57.55. 
In high-pass case, mean= Inf., median= -2.403e-11, mode= 
2.005e-15, and STD= Nan. 
     Figs. 2 (a) is response of Butterworth low-pass filter. The 
pass-band ripple for this filter =10. (b) is response of Butter-
worth high-pass filter with pass-band ripple =10. 
In low-pass case, mean= -93.24, median= -107.3, mode= 0, and 
STD= 53.16. 
In high-pass case, mean= Inf., median= -8.064e-11, mode= 0, 
and STD= Nan. 
     Filtering involves the manipulation of the spectrum by 
passing or blocking certain portions of the spectrum, depend-
ing on the frequency of those portions. Digital filters are de-
signed using frequency specifications. MATLAB provides dif-
ferent options for digital filter design, which includes function, 
calls to filter algorithms and a graphical user interface. 
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Figs. 1.  (a) Magnitude response vs. normalized frequency for 
low-pass filter (pass-band ripple=5). (b) Magnitude response vs. 
normalized frequency for high-pass filter (pass-band ripple=5). 

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

NORMALIZED FREQUENCY

M
AG

NI
TU

DE
 R

ES
PO

NS
E

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-300

-250

-200

-150

-100

-50

0

50

NORMALIZED FREQUENCY

MA
GN

IT
UD

E 
RE

SP
ON

SE

(b)

 
Figs. 2.  (a) Magnitude response vs. normalized frequency for 
low-pass filter (pass-band ripple=10). (b) Magnitude response 
vs. normalized frequency for high-pass filter (pass-band rip-
ple=10). 
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The frequency response of the Butterworth Filter approxi-
mation function is also often referred to as "maximally flat" 
(no ripples) response because the pass band is designed to 
have a frequency response which is as flat as mathematically 
possible. 

  
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
The frequency response of the Butterworth Filter approxi-

mation function is also often referred to as "maximally flat" 
(no ripples) response because the pass band is designed to 
have a frequency response which is as flat as mathematically 
possible. 

Figs. 3 (a) is response of Butterworth low-pass filter. The 
pass-band ripple for this filter =15. (b) is response of Butter-
worth high-pass filter with pass-band ripple =15. 
A detailed mathematical analysis of each design was per-
formed. MATLAB code based on the analyses was written. 
In low-pass case, mean= -88.74, median= -102.1, mode= 0, and 
STD= 48.69. 
In high-pass case, mean= Inf., median= -2.705e-10, mode= -
8.679e-15, and STD= Nan. 

The mathematically simplest and therefore most common 
approximation is Butterworth filters. Butterworth filters are 
used mainly because they are easy to synthesize and not be-
cause they have particularly good properties. The filter order 
must be an integer, and we therefore, but not always, select 
order to the nearest highest integer. The transfer function of 
Butterworth filters can be calculated by (3). The magnitude 
function is maximally flat at the origin and monotonically de-
creasing in both the pass-band and the stop-band as shown 

above. 
However, one main disadvantage of the Butterworth filter is 
that it achieves this pass-band flatness at the expense of a wide 
transition band as the filter changes from the pass-band to the 
stop-band. It also has poor phase characteristics as well. But-
terworth filter advantage is that Butterworth filters have a 
more linear phase response in the pass-band, i.e. the Butter-
worth filter is able to provide better group delay performance, 
and also a lower level of overshoot. 

Figs. 4 (a) show phase of Butterworth low-pass filter. The 
pass-band ripple for this filter =5. (b) is phase of Butterworth 
high-pass filter with pass-band ripple =5. 
In low-pass case, mean= -1.062, median= -1.552, mode= -3.057, 
and STD= 1.323. 
In high-pass case, mean= 0.9328, median= 1.209, mode= -
3.106, and STD= 1.47. 
 
 

 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     Finally, Figs. 5 (a) show phase of Butterworth low-pass filter. 
The pass-band ripple for this filter =10. (b) is phase of Butter-
worth high-pass filter with pass-band ripple =10. 
In low-pass case, mean= -0.07398, median= -0.3522, mode= -
3.036, and STD= 1.135. In high-pass case, mean= 0.8535, me-
dian= 1.041, mode= -3.116, and STD= 1.359. 
Figs. 6 (a) show phase of Butterworth low-pass filter. The pass-
band ripple for this filter =15. (b) is phase of Butterworth high-
pass filter with pass-band ripple =15. 
In low-pass case, mean= 0.7853, median= 0.8939, mode= -
3.116, and STD= 1.277. 
In high-pass case, mean= 0.7853, median= 0.8939, mode= -
3.116, and STD= 1.277. 
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Figs. 3.  (a) Magnitude response vs. normalized frequency for 
low-pass filter (pass-band ripple=15). (b) Magnitude response 
vs. normalized frequency for high-pass filter (pass-band rip-
ple=15). 
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Figs. 4 (a) Phase vs. normalized frequency for low-pass filter 
(pass-band ripple=5). (b) Phase vs. normalized frequency for 
high-pass filter (pass-band ripple=5). 

 

 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013                                                                    213 
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org  

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

4 CONCLUSION 
Through the results we have obtained in the design of IIR fil-
ter, we found that the method used in the design of higher-
efficiency through existing evaluation curves above using 
MATLAB. The flat response within its pass-band and ade-
quate roll-off is two properties for this type of filters. As a re-

sult the Butterworth filter may also be known as the maximal-
ly flat magnitude filter. The Butterworth filter is often consid-
ered as a good all round form of filter which is adequate for 
many applications, although it does not provide the sharpest 
cut-off. Butterworth also showed that his basic low-pass filter 
could be modified to give low-pass, high-pass, band-pass and 
band-stop functionality. The frequency response of the But-
terworth filter is maximally flat (i.e. has no ripples) in the 
pass-band. 
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Figs. 5 (a) Phase vs. normalized frequency for low-pass filter 
(pass-band ripple=10). (b) Phase vs. normalized frequency for 
high-pass filter (pass-band ripple=10). 
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Figs. 6  (a) Phase vs. normalized frequency for low-pass filter  
(pass-band ripple=15). (b) Phase vs. normalized frequency for 
high-pass filter (pass-band ripple=15). 
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